

Hinweise und Merkmale:

- Der Michelin Evobib ist ein neuartiger Reifen für den Einsatz im Feld und auf der Straße.
- Die 2-in1-Technologie ermöglicht es, dass der Reifen je nach Fülldruck sein Profil und seine Aufstandsfläche verändern kann.
- Er vereint die Eigenschaften von 2 Reifen und passt sich den Einsatz- und Bodenbedingungen optimal an.
- Beim Einsatz im Feld bei einem Luftdruck unter 1,2 Bar senken sich die Reifenschultern ab.
- Dadurch vergrößert sich die Aufstandsfläche um bis zu 20%, die Traktion wird verbessert und der Boden optimal geschont.
- Beim Straßeneinsatz mit höherem Luftdruck werden die Reifenschultern angehoben, nur der mittlere Teil der Lauffläche berührt den Untergrund.
- Dadurch werden Rollwiderstand und Kraftstoffverbrauch verringert und der Fahrkomfort erhöht.

Reifen VF 600 / 70 R 30, EvoBib 165 D / 161 E, TL Michelin

Art-Nr.: 10002715

Technische Daten:

Artikelnummer	10002715
Reifengröße	VF 600 / 70 R 30
Radial / Diagonal	Radial
TL / TT	TL
LI/SI	165 D / 161 E
Profil	EvoBib
Fabrikat	Michelin
Empf. Felge	DW21B(A)
zulässige Felge	DW20B(A)
Breite mm	597
Außendurchmesser mm	1598
stat. Halbmesser mm	684
Abrollumfang mm	4696
Tragfähigkeit kg/bei km/h (1)	5150 / 65
Tragfähigkeit kg/bei km/h (2)	4625 / 70
Luftdruck bar	2,40
Gewicht kg	190,00
Reifeninhalt 75% Liter	468
Stollenhöhe mm	53,0
Stollenanzahl	22x2
Nennbreite [mm]	600
Querschnittsverhältnis	70
Reifentechnologie	VF
Laufrichtungsgebunden	Ja
Profilsymmetrie	symmetrisch

Die Bohnenkamp Austria GesmbH übernimmt keine Haftung im Zusammenhang mit diesen Daten. Eine Haftung für jegliche unmittelbaren oder mittelbaren Schäden, Schadensersatzforderungen, Folgeschäden gleichwelcher Art und aus welchem Rechtsgrund, die durch die Verwendung der erhaltenen Informationen entstehen, ist, soweit rechtlich zulässig, ausgeschlossen.